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Computer systems being incorporated into mature
support networks are facing a substantial protocol
implementation effort in granting controlled access
to their resources and in obtaining access to
network-supplied” resources. This protocoi
implementation effort can be significantly reduced by
using resource sharing protocols that are independent
of specific resource semantics.

A capability-passing model for distributed access
control is described and several capability
management protocols are discussed.’ Highlights of
the discussion include:

k —.

. the inalienable right to pass capabilities,

w capability theft through data theft and reflection,

● capability management by public key encryption,

● a capability passing structure, and

● resource sharing.by hmtis using an integration of

network directories.

\
Keywords and phrases: distributed, network operating

system, co=unication protocol, resource sharing>.
capability, public key, encryption, access control,
directory.
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1. Introduction-.

The fmdeiaental task of a computer operating system (OS) is
resource management and control. In the case of stand–alone
single-computer operating systems the assumption is made that its
res~urces kre crekled Irtimaireclly a~tached peripheral devices
(figure 1). In this type of system the operating system is lord and
master of its realm and is able to dole out resource access in any w-ay
it chooses. The absolute power wielded by these stand-alone systems has

‘ given rise to numerous forms of resource access control. These include:
user indexes and ~roups, directories, passwords, access control lists,
capabiii,ty lists, and others [Bob’72, RiT74, 0rg72, WU174].

●

In recent years the distributed nature of many modern computing
facilities has created a need for distributed operating systems adequate
to manage access control for their distributed resources. The component
operating system for a single machine in a distributed computing
facility [figure 2) generally finds itself more of a demigod than did
its omnipotent stand–alone ancestors. These component systems do
control their directly attached peripherals but often must share access
to most resources with other computers on a communication network
(figure 3). The resource sharing mechanisms possible for such component

systems are considerably more restricted than those for stand-alone
systems.

An example of this situation for component operating systems was
that faced when a Cray-1 processor was recently added to the Octopus
network [Fle’i’3,Wat78~ at Me Lawrence Livermore Laboratory. When this
processor-was attached to the network, its only peripherals were enough
disks for temporary file storage and a high speed network interface

k (figure 2)[Chr77,-DoY76]. The task of the component OS for such a
machine is to make its processing and disk storage resources available
to the ne$wo~k aqd to allow its processes convenient access to resources
available on the network. The design for such an OS becomes in large
part the design of a communication protocol: a protocol for distributed

access control. We will explore some of the issues and methods involved

in the design of such distributed access protocols.

2. Commmication Primitives

In order to define m ficcess control protocol it is necessarv o
* rimitives that it will”be built upon. “ <It is

important to require as little as possible of these primitives in order
to allow the defined protocol to be utilized with as wide a variety of
communication facilities as possible.

The primitives that we utilize here consist of a simple bit string
or “bucket of bits” communication facility. We assume that the active
elements capable of communicating (hereafter referred to as processes)
are able to send and receive bit strings (messages) of unlimited length9
and that the megsages can be addressed-to and from an unlimited supply
of network addresses. We assume that the issues faced by typical
end-to-end and lower level protocols (error detection and correction,

#
flow and congestion control, routing and identification, etc.) are

PrOPerlY hti~dled by ~}1~ communication ~acilily [Fle79, FIW78, Pc)s80,

Wat79].
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Defining the Distributed Resource Sharing Problem
:~>:.-

3. ,

The essence pf the resource-sharing problem can be characterized by
considering the three processes diagramed in figure 4, a resource
service and two resource-using processes. The problem can be divided
into lwo parts: resource-accbss valic.talionby lhe service process and
resource-access passing between pairs of using processes.

* For our discussion it will be convenient to have a single term to
denote resource access. We will use the term capability rDeV66, Doni’6,
Engi’2, Fab74, Lan75, LaS76, Nee79, WU174]. We say that a process has a

● gapabi~jiy to a resource if it has been authorized to access the.....
resource.

This use of the term capability is a generalization of the way it
is often used in the discussion of capability list (C–1ist) operating
systems [Lan75, LaS76, WU174]. In C-list systems capabilities do
authorize resource access, but the term is generally restricted to refer
to a specific form of capability implementation as some type of pointer
that is protected by the kernel of a stand-alone OS. In such systems
all capability passing and validation (in this restricted sense) is
mediated by the system kernel. This centralized approach to access
control unfortunately does not extend well into a distributed
environment [Don76].

Our purpose here is to explore the types of protocols suitable for
capability authorization and passing in a network operating system. Our
protocols must allow s?rving pr~cesses to give out capabilities to
potential users in such a way that:

m a. The capabilit~es can be validated when used as authorization for
service requests, and

b. The capabilities can be communicated or passed between any processes
that can communicate data.

3.1 ‘l’heinalienable Right to Fass Capabilities

The requirement of capability passing (b above) often provokes some
controversy. It is sometimes argued that allowing a process with an
authorized nap~hllity to pass its ant.horizatiop to ano!.herprocess is
not” always desirable. Indeed, “anumber of operating systems go to a

great deal of effort to offer features that restrict capability passing.

Since the right to access any resource must originate from within
the domain of the serving process, all capabilities must be passed at

least once (namely from the service process to a using process) to be of
any use at all. To handle this “first-pass” situation, some operating

systems have used the expedient of a “pass-once” capability [Bas’77].
Since a stand-alone OS can arrange to monitor capability pointer
pagsing, it can mark “pass-once” capabilities as”unpassable after they

have once been passed from their service process to a user. In addition
to being somewhat awkward, however, these attempts to restrict
capability passing have the disadvantage that they can never really

work. Thy cut only work in lhe limilecl sense of Lk Lerm ctipabilily

discussed above (a pointer protected by a stand-alone 0S), but not in
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the more f&<~ional sense (that we have adopted) of granting the right ““
to access a resource.

To see the difficulty of restricting capability passing we need
only consider the processes A, B, and S pictured in figure 4. Suppose
Lhat A has M capubilily 10 a resource serviced by S. Also suppcJs& lhdl

A can communicate with B (if not, then A clearly cannot pass
capabilities or anything else to B; so no special capability passing

, restriction is necessary). If the mechanism used to pass direct access
to a resource from A to B has been denied by a monitoring OS kernel, A
can still give B the right to (indirectly) access the resource. A Cm

Simply hqve B send all ~tp service requeqts to A for forwarding to S. A
●

will als’ohave to return the results of such requests to B.

In some cases this sort of indirect capability passing is a useful
mechanism. For example in cases where A wishes to monitor B’s accesses
to the resource or where A wishes to be able to cut off B’s access at a
later time. In many other cases, however, the inability to pass direct
access to a resource simply places an unnecessary additional
communication burden on the passing process.

Since it is our intent to make the capability management protocols
we consider as convenient as possible and since it is not possible to
truely stop capability passing between processes able to communicate, we
will only consider protocols that support the passing of direct resource
access. Indirect capability passing (as above) is always available to
any process that chooses to use it in lieu of direct capability
communication.

p ..

4* Tools Available for Capability Validation

In choosing a capability management protocol it is convenient to
center attention first on the validation mechanisms available. The
capability passing mechanisms seem to follow naturally from the
validation techniques chosen.

When a service process receives a request for resource access, it
receives two pieces of information that can be used for capability
validation:

i) the message data (the string of bits), and

ii) the address of the sender (remember we assume that our
communication primitives validly identify the addresses of sending
processes).

These two pieces of information naturally give rise to two basic
approaches for capability validation. ‘+

●

4.1. Data Authorization

●

A service process using data authorization gives some secret
information 10 processes mulhori’zeci10 access Lhe resource. IL hC)~f3S

that other unauthorized processes will not be able to guess or
surepticiously obtain the secret information.

–4–



4.1.1. Password Protected Capabilities
SC<.

A simple form ~f data authorization is a pure password protocol.
To create a password-protected capability, a service process creates a
block of data containing the resource identification” and a secret
password 10 ttulhorize risource acceys. To validate an access reques~
authorized by a password–protected capability, the service process need
only compare the password in the received capability data block with the

* valid authorizing password. The authorizing password can either be
choosen at random and stored with the resource or can be computed from
the resource identification by a secret algorithm known only to the

8 server (e:-g., encrypted with a secret key).

4.1.2 Communicating l?assword-Protected Capabilities

Password-protected capabilities are the easiest type of all to
communicate. To pass the right to access a password-protected
capability from one process to another, it suffices to pass the
capability data block (including its password) in a message.

4.1.3 The Data Theft Problem for Capabilities

The ease of communicating password-protected capabilities also
gives rise to their most significant problem. A process with a
password-protected capability in its domain (e.g. in its memory space)
mst be careful not to reveal $he secret password. Although the domains
of processes are generally protected from information theft, password-
protected capabilities make some of a ~rocess’s information particularly
sensitive. Por example., a resource such as a file or directory may
remain in existence long after the process and its memory are no longer
used.

The problem of information theft is especially serious in light of
typical programming practices. It is quite common when debugging
programs to output blocks of memory to examine them for program
inconsistencies. lf such memory output contains password-protected
capabilities to sensitive resources, then it must be carefully protected

(e.g. not taken to a consultant for analysis).

4.2 Address Authorization

A service process using address authorization utilizes the address
of the requesting process (as supplied by the co~ication facility) in
determining whether or not to allow a resource request.

.
● Resource identification is generally divided into a portion
containing the address of the service-process and some service-process
dependent additional information identifying a specific resource to the“
server. Since we are concerned here predominately with authorization
and validaliun, we will nol Iurlher discuss resource idenLilicaLion.

Additional discussion of identification issues can be found in [FIW80,
Wat80].
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The conceptually simpliest form of address auth~rizqtion is an
access list protocol. To create an access-list-validated capability, a

service process creates and maintains a list of addresses that are
allcwved Lo access the resource. Service processes for access–lisl–

protected capabilities need only pass resource identification
information to authorized using processes. This information is not used

‘ for authorization, however. To validate an access request authorized by

an access-list-protected capability, the service process checks to see

if the sender’s address is in the access list for the identified
● resource.

4.2.2 Communicating Access-List–Protected Capabilities

Communicating access-list-protected capabilities is a good deal
more difficult than communicating password-protected capabilities. The
basic difficulty is that the service process must update its access list
every time a capability is passed from one using process to another. To
do this the service process must be notified that the capability
transfer is taking place.

4.2.3 The Reflection Problem for Capabilities

At first glance it might appear that the passing of an access-list–
protected capability could be accomplished in two steps:

k
S1 . Request the service process to add the address of the process..;

to receive the capability to the access list, and

s~. Send the resource identification to t~e receiving process.

Unfortunately, the above steps do not quite suffice for secure
capability passing. The problem that exists is best illustrated by an
example that is also useful in characterizing similar problems in other
capability passing protocols.

The essence of the capability reflection problem is the situation
that can arise if a process, D, cm be duped into falsely believing that
it received a capahil ity from annt.~er process$ R. lf T)can then be
called upon to send [reflect) the capability back to B, B may receive an
unauthorized capability.

To illustrate the capability reflection problem for the two–step
access list protocol above, consider the directory service D depicted in
figure 5. The function of this directory server is storage and
retreival of capabilities. It allows processes to store capabilities in

directories so that they may later be retrieved end used by any process
‘ with a capability to the directory. A directory server allows processes

to store and share capabilities in a manner analagous to the way a file
server allows storage and sharing of information.

●

We suppose for our example that process A has the only capability
10 w uccess-l isl–prolecled resource serviced by S. We also suppose
that A has a capability to directory DA and that B has a capability to
DB (but not to DA). Any authorization protocol used for the
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capabilities to the directories themselves will suffice. For example,
the reader might consider them protected by passwords.

Now consider what must happen if A is to store its capability in

‘A “ Following steps S1 and S2 above, it first requests S to add D to
Lhe access list Ior the resuurce (l). A then sends lhe res~urce
identification to D and requests that the capability be stored in DA
(2).

.

If at a later time some other process with access to DA requests
retreiva~.of the stored capability, 1)must go through steps S1 and S2 to

~ pat~sfy the request: That is it qw?t have S add the retreiving process
to the resource access list and then must return the resource
identification to the retreiving process.

The capability reflection problem appears whenwe consider what
happens if process B sends the resource identification (which A has not
kept secret because it trusts the access list mechanism) to D and
requests that its capability be stored in DB (3). Of course B cannot
succeed if it requests S to add D to the resource access list (sin,ceB
itself is not on the Iist), but no matter. As we have seen, 1) is
already on the list thanks to A. At this point the situation appears to
D as if Bwere authorized to access the resource. All B need do is ask
D to retreive the capability from its directory (4) and it will have
duped D into placing it on the access list without proper authorization.
We will see a similar reflection problem appear in conduction with data
theft when we consider public key encryption protection of capabilities.

4.2.4 Protecting from Capability Reflection
} —.

To supply an access-list-based capability management protocol that
is safe from the reflection problem, we need to add something to the
simple two-step protocol given above. One method of bolstering the
two-step protocol requires all capabilities to be received from the
-resource service process. Using this protocol, a process sending a
capability to another just notifies the receiver to expect the actual
capability from the resource service process. The sender also requests
the server to add the receiver to the resource access list AND to send
the capability identification to the receiver on the sender’s behalf.
The fact that the process receiving the capability actually receives the
resource identification from the service process along with the address
of the sending process guarantees that the sender was authorized to

access the resource.

This access–list protocol is somewhat awkward and requires a
significant amount of message traffic. An additional defect is its

requirement that the resource service process be available for
capability transfers between any two processes at any time. The

access-list protocol also requires servers to maintain access-lists

● which must be stored, checked for overflow, etc.

The advantage of the access-list protocol over password protection
4 is its freedom from the data theft problem. The only information that

can be stolen from a process’ s memory space concerning an access–list–

prolecled capubilil.y is ils resources’ ide~llifi~~Li~nY. si~~ee ~
resource identification is not sufficient authorization for resource
access or capability passing, data theft is not a threat.

-7–
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4.3 Capability Authorization Using Both Data and
Address Authorization

There are a number of methods for combining data and address
authorization in a capability management protocol. Two examples are now
discussed.

9 4.3.1 Encrypted-Address–Protected Capabilities

This...protocol is able to obtain the data theft protection of access

‘ Il?!s w?!!Y?v? the need *O rnmage the !ist~~ In this ?cheme !hg Tesou!$e
service process grants a capability to a using process by encrypting the
authorized user’s address and the resource identification into a block
of data that is sent to the authorized process (the portion of the data
block containing the server’s address is not encrypted). To validate
resource access using this scheme the service process decrypts the data
bIocks sent in to authorize resource access and compares the decrypted
address from the data block with the address of the sender returned by
the communication facility. Only if the addresses
be authorized access to the resource identified in
block.

match will the sender
the decrypted data

4.3.2 Communicating Encrypted-Address Capabilities

To communicate an encrypted-address capability it must be passed to
the receiver through the service pr~cess as with access-list–protected
capabilities. With en encrypted-address protected capability, however,

the server need no~ maintain an access list. Instead, it decrypts any

capabilities to be passed, and, if the capability is valid, sends a
capability to the receiver that is reencrypted with the receiver-s
a~fl~ess.

Encrypted-address-protected capabilities share with
password-protected capabilities the hazard (however remote) that a
capability could be guessed. As with access-list–protected

capabilities, they require the cooperation of the service process for
*11 capability transfers and are somewhat awkward for the receiver. In
addition they require the overhead of the decryption and encryption
operations when being passed.

The major advantage of encrypted-address capabilities is that they
offer essentially the same resistance to the data theft problem as
access-list-protected capabilities, but do not require the management of

access lists by the service processes.

4.3.3 Public-Key-Encryption-Protected Capabilities

a This last example authorization method provides the safety from
data theft of access-list protection, but does not require access-list
maintenance nor message exchanges with the service process for

4 communication of capabilities.

TIIis melhod depends Ior ils opralion on Lhe exislence of a

practical public key encryption mechanism. We assume that every process

A has a secret decryption algorithm which we will denote by A+ (0 = up

–8–
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into the bright light of day). We also assume that ALL processes are
able to encrypt,data to be sent to any process A with a public
encryption algorithm that we will denote by A+ (+ = down into the dark
world of encryption). We therefore have that for any process A and data
d, AhA@d = d. Finally, we assume that At and At commute, i.e. AOAfid =
A~AGd = d. The reacie; is referred to [Lemi’9] Ior furlher discussion of
such algorithms.

● The basic idea of public-key-encryption protection is similar to
that of encrypted-address protection. While a capability resides in the
domain of..aprocess, A, it is protected from theft by encryption. In

~ thjq ca?e ingteqd of having A’s address encrypted in the capability, a
password-protected capability to the resourcec, Sot, encrypted with the
public encryption algorithm of A, A@S~c. Because of the secrecy of AQ,
no process able to steal the encrypted capability will be able to use
it. In order to avoid the problems associated with distributing the
public keys [PoK79] the public key for the server is kept in clear text
in the data block of every capability. Also, c must have enough
redundancy so that a random data block will not be interpreted as a
valid (random) capability.

4.3.4 Communicating Public Key Encrypted Capabilities

It might appear tha~ for communicating a public key encrypted
capability from A to B it would suffice for A to transform the stored
A+pc with BOA*. This would remove A’s protection and reprotect it for
B. Unfortunately, however, this simple form of capability communication

is subject to a hazard of data theft and reflection. lf a process could

i
steal a capability from A’s domain, it could reflect it off of A (send
it to A and ask for it back as in the directory example given
previously) and gain unauthorized access. Similarly, if a process could
steal the capability from A after i! had been readied for trcqm.fer tO B,
it could be reflected off of B to obtain unauthorized access.

These difficulties can be remedied by performing the following
transformations for sending and receiving capabilities. For A sefiding a
capability to B, it uses the transformation B+AtAs. The first AA
removes A’s protection, the second A* effectively signs the capability

as coming from A, and the final B@ protects it so that it cannot be
stolen from B’s domain when it arrives.

For B receiving a capability from A, it uses the transformation
B~A@B~ . The first B* undoes the protection that A put on for B, the
middle A+ unsigns the capability, and the final B@ protects the
capability for residence in B’s domain. Figure 6 follows the

transformations performed as a capability for a resource identified by c
passes from a server S to A, then to B, and finally back to S for

authorization.

An interesting prqerty of this protocol is the fact that a process
with a capability can safely “look” at the clear text identification of

the resource. For example, in figure 6 process A can apply S&At to the
AOS*C that it holds in memory to yield c. There is no danger from

having the clear text c stolen (at least in terms of protecting the

resource–access 01 c) becnu~e no process will be able 10 produce lhe S*C
that is required for validation by S. Another interesting and
convenient fact is that while the capability is in the servers domain

-9–



its normal storage form i3 clear text. The server’s “look”
transformation is the identity transformation.

An important requirement of this protocol is that its
transformations (receiving, looking, and sending) be indivisible. That
is, inlermecliule resulls bust not tippear in the memory 01 processes
where they might be stolen. For example, if the transformation
B@AOAO(A&S*C) were to yield the intermediate result S*C in memory after

9 the first A*, the integrity of the mechanism would be breached. S*C is
essentially a password–protected capability in that any process able to
steal it,X, can transform it into XoS~c and then use it or pass it,

\

The protection of the private encryption key and the intermediate
results can be achived in several ways. For example in a
multiprocessing OS component the transformations can be performed by the
OS kernel in responce to a virtual user instruction (only the kernel
knows the process-s private decryption key). In a smaller single domain
system (e.g. a microprocessor system) it might prove effective to have
the transformations performed in a hardware device that alone knows the
system’s private decryption key.

It has been pointed out elsewhere that in many situations the
problem of distributing public encryption keys is as severe as that of
distributing secret keys [PoK79]. The difficulty comes from trying to
match a public key with some previously identified entity. For example,
is this public key really that of the person with whom I intent to
correspond? Fortunately this difficulty is not present in the
capability protection mechanism discussed here since the public keys are
distributed in the capability data blocks. It is true that a server (or

B
anyone else) could endanger a trusting user by passing out a capability
with an incorrect public key or other invalid” identification
information. This is simply an instance of the well known Trojan Horse
problem, however, and ~s necessarily present in the best of capability
management mechanisms.

This public-key-validation protocol has the strength from data
theft of the access-list and encrypted-address schemes, but requires no
access-list management or extraneous message passing. Its major
weakness is the overhead involved in the transformations required. It
depends, of course, on the existence of a suitable public key encryption
algorithm.

It should be mentioned here that there are capability protection
protocols that protect from data theft without message traffic but do
not depend on public key encryption. The only such protocols known to

the authors [Nes80], however, involve some additional complications for
key distribution and and management that are not relevant here.

7. A Capability Passing Structure
;

We have explored four examples of capability passing protocols.
Each seems to have strengths and weaknesses. From the viewpoint of a

c process wishing to communicate capabilities this is a rather negative
result. It appears that there is little likelihood of finding a best.
ciipahilily passing prolocol LhtiL can be used as a standard. There is a

great deal of commonality in these example protocols, however. By

-1 o–
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exploiting this commonality it may be possible to at least define a
common capability passing structure.

All of our example capability passing protocols can be divided into
three analagous parts: the communication proper, the sending
LrunsformtiLion, ~nd lhe receiving traxlslc)rlnalion.The commu~iical,io~~
proper is simply a matter of communicating the capability data block
including the server’s network address and the server dependent

● information. The sending and receiving transformations break down as
pictured in table 1.

Table 1

Sending and Receiving Transformations for
Example Capability Passing Protocols

Exenmle

a. Password

b. Access List

0 c. Encrypted Ad@ess

d. Public Key A + B

Sending

None

Request Server to
add to list and
forward ident.

Request server to
reencrypt and
forward.

Receiving

None

Receive identification
from server.

Receive reencrypted
capability from
server.

From the table it is apparent that examples b and c are identical
from the perspective of the communicating processes. In both cases the
sender also sends the capability to the server and in both cases the
receiver receives the capability confirmation from the server.

To integrate these example protocols into a common structure we can
supply each capability passing process with library routines for the
sending and receiving transformations that can handle the three distinct
forms. The routine “SendTransform” is passed the stored capability data
block and the address to which the capability is to be sent. It returns

a capability data block suitable for direct transfer. The capability

data block must always keep a description of the form of protection that
2 it uses in clear text. This protection form description allows the

transformation routines to determine which transformation to perform.

. The routine “ReceiveTransform” is passed the received capability

data block and the address that the block was received from. It returns

lhe Lransforrned c~ptibiliLy rlalablock in tiform suiLable for sloring in
the domain of the receiving process.

-11–
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This common structure highlights the practical difficulties with
the access list and encrypted-address protocols. In general the
receiving transformation f~r this capability passing fcmm must wait for
a message from the server before being able to store the transformed
capability.

8. Integration of Network Directories
●

It is a little difficult to fit the capability management protocols
into perspective without an example of their use. Accordingly we give

‘ the exqmple Of $he direct9ry service discussed briefly earlier, Th!s
example illustrates the the type of network-wide name space needed for
humans to share capabilities effectively.

The basic idea of the directory service is to store capabilities by
name (figure 5). The essential operations on a directory resource are
store, retrieve, delete, and list:

Table 2

Primitive Directory Operations

Sends directory
capability and

Operation opcode and

r .—

a. Store the capability to store
and the name to store
it under.

b. Retreive the neme to retreive

c. Delete the name to delete

d. List -nothing else–

Directory server
returns

OK or error
(e.g. nane conflict).

the capability
retreived

OK or error

a list of stored
capability names

A capability to a directory is one type of capability that can be

stored in a directory. Directories therefore naturally form a general

directed graph (figure 7 and 9). Furthermore, since a capability to a

directory serviced by one server can be stored in a directory serviced
s

by another. the directory structures are trivially integrated (figure

7). The ability to integrate directories in this way is a consequence

of the fact that the directory servers share a common capability–passing
.

protocol.

8.1 Human Use of Directories

–12–
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A natural way to introduce human beings into a resource sharing

structure managed by directories is to give each user a private
directory in which t.o store capabilities. Since vany of the resources

stored in this private directory will themselves be directories, the
private directory becomes the starting point or root from which the

ti~her resources belonging LO a user c~n be retiched. Each US~~ ctin &

given a password–protected capability to this root directory to memorize
and later regurgitate when “logging in.”

v

If each user is also given som~ type of account capability to
author ize..creation of new resources then they can get started building

‘ a reqource structure for their private use. Directories can be created
for storing related resources and saved in the root directory for future
reference. Files, processes, or other resources can be stored in this

created directory structure.

8.2 Directory Manipulation Utilities

Typically users manipulate their
general purpose utility that performs

a. Duplicate Pathl to Pathz

directory structures with a
operations such as:

b. Delete Pathl

c. Create Directory Pathl

d. Destroy Dl,rectory Pathl

Here the Paths are lists of names. Namel,Name2, .... ~~ep=th~ize.

For all the paths the utility starts with the user’s root directory and
scans down successive names as noted in figure B.
directory, Dir, and the last name, Name, are used

a. Duplicate - Retrieve Namel from Dirl and
Name ~.

h. T)elett?- Namel from l)irl.

The resulting
by the operations as:

store it in Dirz as

c. Create - a directory serviced by a convenient directory server
and store its capability in Dirl as N=el.

d. Destroy - Retrieve the capability Namel from Dirl- Ass~e that
it is a dirctory capability and have the server destroy it.
AISO delete the nowuse~ess capability N~el from dirl.

$

.

“ Discussion of network accounting mechanisms is beyond the scope of

Lhe preser~L paper. Such mechanisms are king acLively investigated aL

LLL . We expect to report the results Of these investigations at a later

time.
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These interactive services are quite useful for manipulating a
directory structure. Unfortunately, however, if the directory
structures of two users are disjoint (neither contains a directory of
the other), these primitives cannot be used by the users to share
resources. Users can begin sharing with each other by communicating
cupabililies process 10 process, but this is Yumewhat awkward and
outside the scope of the services offered by the typical directory

, manipulation utility.

8.3 Bootstrapping Resource Sharing with Directories,.
Give and Take Directories

Once the directories of two users are linked, sharing of resources
may be possible using a directory manipulation utility as above. If the
user directory structures are linked appropriately, the initial linkage
can be used to bootstrap further more flexible sharing.

At ML the Elephant Storage System [F1F75] (which never forgets
user directories) has for many years supported a general directed graph
directory structure to facilitate sharing of user resources. The
bootstrapping linkage used in this system is simple but powerful. It
provides-~wo-basic facilities:

i) Any user can give a capability to any other

ii) Any user can make a capability available to

To supply i) each user is given a directory

user, and

all other users.

that others can use to

# give him capabili,t~les. A capability to store into this ‘“Give”directory
is placed in a public directory under the user’s name. A capability to
list and retreive capabilities from the public directory of “Give”
directories is also given to everyuser. By using the duplicate
operation described above a user can give a capability to any other user
if they are linked in this way.

To supply ii) each user is given a directory that he can put

capabilities into to aliow others to take them. A capability to list
and retrieve from this “Take” dirctory is placed in a public directory
under the user’s name. A capability to-list and retrieve capabilities

from the public directory of “Take” directories is also given to every
user.

Starting from this simple bootstrap linkage, users can apply the
directory operations described above to construct any type of shared

directory linkage desired. This allows humans to conveniently share

resources by using a network-wide riming structure built on top of the
capability passing protocol.

.
9. The Current State of the Protocols at LLL

The network systems division at LLL is currently in the process of
.

upgading the communication protocols for the Octopus Network [FlW80~ to

support a tightly coupled network network operating system [Don79]. A
mulLiprocessir~g componenL operaLing sysLem is being implemeuled Lo
support these new protocols. The emulation of this component system
that is currently running uses only password-protected capabilities.

-14-
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We expect to continue running the early versions of the network

operating system using only password-protected capabilities (because of
their simplicity) until a need for protection from the data theft
problem arises. The current servers that distribute password-protected

capabilities encrypt the resource identification into the capability

data block using u soIlware implementation 01 lhe Nalional Bureau of
Standards (NBS) Data Encryption Standard (DES) [NBS77].

b
For many years now the Elephant Storage System has provided a

centralized directed graph directory structure for sharing user files
and directories at LLL. When we shift our network protocols over to the

● capa~il!ty passing skrqg!qrp #esCrib?d ab?ve we also expect !O ~pg?sde
the central directory structure to store these generalized capabilities.
As noted before this will automatically integrate it with the locaI
directory services on the component “worker” systems such as the Cray–1.
This integration will give both humans and processes at LLL the ability
to share the Octopus network resources quite flexibly.

10. Conclusions

Many of todays mature resource sharing computer networks require an
integrated network operating system to make effective use of their
facilities. The operating system’s task of controlling access to its
shared resources is greatly simplified if it can control resource
sharing with protocols that are independent of the semantics of the many
resources available in such a network. We have discussed some of the
issues involved ip the design of such protocols and have explored the
strengths and weaknesses of a number of examples.

r .,
Some of the resource–access management mechanisms we have discussed

are not new. Certainly the use of passwords to protect login access to
time sharing systems must by now be considered an ancient tradition in
the lore of computer science. Schemes similar to the access–list

protection protocol can be found in the venerable ARPA network initial

connection and file transfer protocols [ARP78] and in many more modern
8ystems. However, the resource independent sharing protocols developed
here go far beyond the protocols currently popular in distributed
systems. As we illustrated with the integrated network directory
example, there are many distributed system problems now ’considered
difficult that become trivial when considered in the context of a common
resovrce-access management protocol.

The main thrust of this paper has been the suggestion that access
control protocols can and should be studied and implemented apart from
the semantics of specific resources. The discussion has been carried
out using the somewhat metaphorical terminology of communicating or
passing capabilities that has proven effective in use at LLL and
elsewhere.

:
It has become apparent to us at LLL th~t the success of our network

operating system implementation will depend to a large extent on the
success of our distributed access control protocol(s). We expect such

“ protocols to become a more important part of future efforts in
distributed system design.
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9 illustrates the following give and take examples:

doesn’t Edit use the new error code standard?”

changeover hasn’t been announced yet.”

must not have seen the latest progr~er’s news.”

Ouplicute f+ogfVazos to l%b’1’ake,John,Ne~ews

“Look at the ‘Newl?ews’ thatI just gave you.”
... .

,’

Jmhn: .311isplm~ ~~fts>~euiuml}s ““
,,

‘,$. w: ‘“I see. I h~ve a new ve;zs,ii~gpfEdit here,,* wait.?”
,.#.
,.,.
y,!

,..,

,$F

<Test>

“That seems to do it. Thanks.”


